污水厌氧生物处理研究论文
污水厌氧生物处理研究论文 一、概述 随着我国经济建设的发展,城市污水与工业废水的排放量逐年增加。为了 贯彻经济建设和环境保护必须同步发展的方针,污水处理工程必定会有相应的发 展,在这种情况下,有效、经济、省能地解决污水处理问题,已是当今环境工程 领域中最迫切需要研究的课题。实现这一目标的途径除了靠正确决策外,尚需依 赖技术更新,新工艺的开发,资源、能源的合理利用等科学技术措施。目前,污水处理工程基本上还是依靠消耗能量来改善环境质量的一项技术 措施。但在能源有限的条件下,人们已经意识到,浪费能源的生产和生活方式必 须彻底改变,现今评价工程设计优劣的立足点,已经开始转移到基建投资和运转 管理的经济性,以及对能源利用的有效程度。因此,环境工程已不可避免地要与 能源工程体系发生联系。
录求污水处理工程节能措施的技术途径颇多,而用机污水的厌氧生物处理 技术则是重要途径之一。
厌氧生物处理是利用厌氧性微生物的代谢特性,在毋需提供外源能量的条 件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体。厌氧生物 处理法不仅适用于高浓度有机废水,进水BOD浓度可达15000mg/l,也可适用于 低浓度有机废水,包括城市废;
厌氧生物处理法能耗低;
有机容积负荷高,一般 为5-10kgCOD/m3.d高的可达50kgCOD/m3.d;
剩余污泥量少;
产生的沼气可 利用;
营养需要量少;
被降解的有机物种类多;
能承受较大的负荷变化和水质变 化。
显而易见,开发厌氧生物处理新工艺用来治理有机污水的污染,无疑是一 种具有良好经济效益的方法。近年来,污水厌氧处理工艺发展十分迅速,各种新 工艺、新方法不断出现,包括有厌氧接触法、升流式厌氧污泥床、档板式厌氧法、 厌氧生物池、厌氧膨胀床和流化床、厌氧生物转盘等,目前升流式厌氧污泥床这 种新工艺由于具有厌氧过滤及厌氧活性污泥法的双重特点,运转及构筑物造价均 有所下降,对于不同含固量污水的适应性也强,因而已越来越受到重视,国内外 目前已设计和施工的这种工艺较多。
二、升流式厌氧污泥床工作原理升流式厌氧污泥床有反应区、气液固三相分离器(包括沉淀区)和气室三 部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能 的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥 进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以 微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气 泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升 进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿 过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相 分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。
沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥, 与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。
这种工艺的基本出发占在于:(1)为污泥絮凝提供有利的物理--化学 条件,使厌氧污泥获得并保持良好的沉淀性能;
(2)良好的污泥床常可形成一 种相当稳定的生物相,能抵抗较强的扰动力。较大的絮体具有良好的沉淀性能, 从而提高设备内的污泥浓度;
(3)通过在污泥床设备内设置一个沉淀区,使污 泥细颗粒在沉淀区的污泥层内进一步絮凝和沉淀,然后回流入污泥床内。
三、厌氧污泥床内的流态和污泥分布 厌氧污泥床内的流态相当复杂,反应区内的流态与产气量和反应区高度相 关,一般来说,反应区下部污泥层内,由于产气的结果,部分断面通过的气量较 多,形成一股上升的气流,带动部分混合液(指污泥与水)作向上运动。与此同 时,这股气、水流周围的介质则向下运动,造成逆向混合,这种流态造成水的短 流。在远离这股上升气、水流的地方容易形成死角。在这些死角处也具有一定的 产气量,形成污泥和水的缓慢而微弱的混合,所以说在污泥层内形成不同程度的 混合区,这些混合区的大小与短流程度有关。悬浮层内混合液,由于气体币的运 动带动液体以较高速度上升和下降,形成较强的混合。在产气量较少的情况下, 有时污泥层与悬浮层有明显的界线,而在产气量较多的情况下,这个界面不明显。
有关试验表明,在沉淀区内水流呈推流式,但沉淀区仍然还有死区和混合区。
厌氧污泥床内污泥浓度与设备的有机负荷率有关。是处理制糖废水试验时, 升流式厌氧污泥床内污泥分布与负荷的关系。从图中可看出污泥层污泥浓度比悬 浮层污泥浓度高,悬浮层的上下部分污泥浓度差较小,说明接近完全混合型流态, 反应区内污泥的颁,当有机负荷很高时污泥层和悬浮层分界不明显。试验表明,污水通过底部0.4-0.6m的高度,已有90%的有机物被转化。由此可见厌氧污 泥具有极高的活性,改变了长期以来认为厌氧处理过程进行缓慢的概念。在厌氧 污泥中,积累有大量高活性的厌氧污泥是这种设备具有巨大处理能力的主要原因, 而这又归于污泥具有良好的沉淀性能。
升流式厌氧污泥床具有高的容积有机负荷率,其主要原因是设备内,特别 是污泥层内保有大量的厌氧污泥。工艺的稳定性和高效性很大程度上取决于生成 具有优良沉降性能和很高甲烷活性的污泥,尤其是颗粒状污泥。与此相反,如果 反应区内的污泥以松散的絮凝状体存在,往往出现污泥上浮流失,使厌氧污泥床 不能在较高的负荷下稳定运行。
根据厌氧污泥床内污泥形成的形态和达到的COD容积负荷,可以将污泥颗 粒化过程大致分为三个运行期:
(1)投产运行期:从接种污泥开始到污泥床内的COD容积负荷达到 5kgCOD/m3.d左右,此运行期污泥沉降性能一般;
(2)颗粒污泥出现期:这一运行期的特点是有小颗粒污泥开始出现。当 污泥床内的总SS量和总VSS量降至最低时本运行期即告结束,这一运行期污泥沉 降性能不太好;
(3)颗粒污泥形成期:这一运行期的特点是颗粒污泥大量形成,由下至 上逐步充满整个厌氧污泥床。当污泥床容积负荷达到16kgCOD/m3.d以上时, 可以认为颗粒污泥已培养成熟。该运行期污泥沉降性很好。
五、污泥的流失与外部沉淀池的设置 在升流式厌氧泥床内虽有气液固三相分离器,混合液进入沉淀区前已把气 体分离,但由于沉淀区内的污泥仍具有较高的产甲烷活性,继续在沉淀区内产 气;
或者由于冲击负荷及水质突然变化,可能使反应区内污泥膨胀,结果沉淀区 固液分离不佳,发生污泥流失而影响了水质和污泥床中污泥浓度。为了减少出水 所带的悬浮物进入水体,外部另设一沉淀池,沉淀下来的污泥回流到污泥床内。
设外部沉淀池的好处是:(1)污泥回流可加速污泥的积累,缩短投产期;
(2) 去除悬浮物,改善出水水质;
(3)当偶尔发生污泥大量上漂时,回收污泥保持 工艺的稳定性;
(4)回流污泥可作进一步分解,可减少剩余污泥量。
设外部沉淀池的升流式厌氧污床工艺流程。六、升流式厌氧污泥床的设计 升流式厌氧污泥床的工艺设计主要是计算厌氧污泥床的容积、产气量、剩 余污泥量、营养需要量. 升流式厌氧污泥床的池形状有圆形、方形、矩形。污泥床高度一般为3- 8m,多用钢筋混凝土建造。当污水有机物浓度比较高时,需要的沉淀区面积小, 反应区的面积可采用与沉淀区相同的面积和池形。当污水有机物浓度低时,需要 的沉淀面积大,为了保证反应区的一定高度,反应区的面积不能太大时,则可采 用反应区的面积小于沉淀区,即污泥床上部面积大于下部的池形。
气液固三相分离器是升流式厌氧污泥床的重要组成部分,它对污泥床的正 常运行和获良好的出水水质起十分重要的作用,因此设计时应给予特别的重视。
根据经验,三相分离器应满足以下几点要求:
1、混和液进入沉淀区之关,必须将其中的气泡予以脱出,防止气泡进入 沉淀区影响沉淀;
2、沉淀器斜壁角度约为50o;
3、沉淀区的表面水力负荷应在0.7m3.h以下,进入沉淀区前,通过沉 淀槽低缝的流速不大于2m/h;
4、处于集气器的液一气界面上的污泥要很好地使之浸没于水中;
5、应防止集气器内产生大量泡沫。
第2、3两个条件可以通过适当选择沉淀器的深度-面积比来加以满足。对 于低浓度污水,主要用限制表面水力负荷来控制;
对于中等浓度和高浓度污水, 在极高负荷下,单位横截面上释放的气体体积可能成为一个临界指标。但是直到 现在国内外所取得的成果表明,只要负荷率不超过20kgCOD/m3.d,厌氧污泥 床高度不大于10m,可以预料没有任何问题。
污泥与液体的分离基于污泥絮凝、沉淀和过滤作用。所以创造条件使污泥 具有良好的絮凝、沉淀性能对于分离器的工作是具有重要意义。
特别注意是防止气泡进入沉淀区,要使固一液进入沉淀区之前就与气泡很好分离。在气-液表面上形成浮渣能迫使一些气泡进入沉淀区,所以在一些情况 下必须考虑设置排放这些浮渣或破坏这些浮渣的设施。
如上所述,升流式厌氧污泥床的混合是靠上流的水流和发酵过程中产生的 气泡来完成的。因此,一般采用多点进水,使进水均匀地分布在床断面上。
升流式厌氧污泥床容积的计算一般按有机物容积负荷或水力停留时间进 行。设计时可通过试验决定参数或参考同类废水用的设计和运行参数。
七、升流式厌氧污泥床的启动 1、污泥的驯化 升流式套氧污泥床设备启动的最大困难是获得大量沉降性能良好的厌氧 污泥。最好的办法加以驯化,一般需要3-6个月,如果靠设备自身积累,投产期 可长达1-2年,初中表明,投加少量的载体,有利于厌氧菌的附着,促进初期颗 粒污泥的形成;
比重大的絮状污泥比轻的易于颗粒化;
比甲烷活性高的厌氧污泥 可缩短启动期。
2、启动操作要点 (1)最好一次投加足够量的接种污泥;
(2)从污泥床流出的污泥一般不需回流,以使特别轼的污泥连续地从污 泥床流出,使较重的污泥在床内积累,并促进其增殖进行颗粒化;
(3)启动开始废水COD浓度较低时,未必泥颗粒化快;
(4)最初污泥负荷率应低于0.1-0.2kgCOD/kgTSS.d;
(5)污水中原来存在的和产生出来的多种挥发酸未能有效分解之前,不 应提高有机容积负荷率;
(6)可降解的COD去除率达到80%左右时,才能增加有机容积负荷率;
(7)为促进污泥颗粒化,反应区内的最小空塔速度为1m/d,采用较高的 表面水力负荷有利于小颗粒污泥与污泥絮凝分开,使小颗粒污泥发展为大颗粒。
八、升流式厌氧污泥床工艺的优缺点升流式厌氧污泥床的主要优点是:
1、升流式厌氧污泥床内污泥浓度高。平均污泥浓度为20-40gVSS/1;
2、有机负荷高。水力停留时间短。中温发酵,容积负荷一般为10kgCOD/m3. d左右;
3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上 部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;
4、污泥床不填载体,节省造价及避免因填料发生堵赛问题;
5、升流式厌氧污泥床内设三相分离器,一般不设沉淀池,被沉淀区分离 出来的污泥重新回到污泥床反应区内,一般无污泥回流设备。
主要缺点是:
1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下;
2、污泥床内有短流现象,影响处理能力;
3、对水质和负荷突然变化较敏感,耐冲击力稍差。
升流式厌氧污泥床工艺近年来在国外发展很快,在国内也已有生产性规模 装置,该工艺既节约了能源,基至可回收能量,又解决了环境污染问题,取得了 较好的经济效益和社会效益。这种新工艺的研究和发展具有广阔的应用前景。