接触器智能控制分析论文 关于智能控制的论文

接触器智能控制分析论文

接触器智能控制分析论文 摘要:阐述了以单片机为基础的交流接触器的智能控制方案和原理。把单 片机的逻辑判断及通讯功能和交流接触器组合,可实现智能化控制。其功能主要 表现在确保交流接触器吸合后,会自动执行低压直流吸持子程序,监测设备的过 流、过压、欠压、三相不平衡及漏电情况,在过零检测的基础上,使触点分断时 的火花能量最小。和上位机联网,可以组成简单DCS系统。

关键词:交流接触器智能控制设计应用 0引言 随着单片机性能价格比的大幅度提高,把计算机和微处理器技术应用于工 业控制特别是增加低压电器智能化功能,具有较大的市场经济潜力。我们在交流 接触器智能控制方案和具体实施中做了大量的研究和可行性分析,开发了一种具 有智能化功能的装置。把该装置和交流接触器相组合,就可以增加交流接触器的 智能化功能。它具有设置简单、使用可靠、节能控制、在线更改设置和显示等功 能。单片机在接到闭合或分断指令时,可以根据最佳分断、闭合相角轮流控制三 个触点进行过零分断与闭合,减小了火花能量。利用它与中央控制计算机的双向 通讯,可以形成局域控制网络和简单DCS系统。它在工业、油田、煤矿、农村(灌 溉系统)和城市等领域和地区有广泛的应用前景。

1接触器智能化内容和工作原理 我国目前使用的接触器、断路器和保护器(例如热继电器)均为机械非智 能型的。一般为交流吸合、交流吸持和随机分断,且线包电压有220V和380V之 分。实验告诉我们,不论是220V还是380V的线包,只要加上不低于160V的直流 电压,接触器均能可靠吸合,并且不会产生一、二次弹跳。此时,只要维持吸持 电压不低于直流15V,就可以稳定地保持吸合状态。分断过程一旦发生,必然伴 随有电弧产生。确定分断过程何时发生的唯一原则就是在时间允许的前提下使电 弧总能量最小。对于单相电磁电路,触点合断的最佳时刻应该是主电路电流过零 之时,而对于三相电磁电路来说,如果分断过程发生在某一相电流过零时刻,此 时三相电弧的总能量应该为最小。轮流控制三个触点的过零分断,可以使它们有 相同的使用寿命。

视控制对象和要求,本方案采用继电器或可控硅作为控制接触器线包通断的元件。在单片机的控制下,系统按设置要求运行并显示。整个电路构成简单, 运行平稳。当启动过程结束,高压自行撤除,续流电路维持吸合状态。总体控制 原理如图1所示。

根据框图可以看出,接通电源以后,整流回路、稳压电源回路及单片机系 统得电。相电流设置完成后,单片机就开始采样并与设定值进行比较,启动回路 和续流回路系统处于待机状态。单片机在对电源电压和相位的不断采样、比较、 记录的同时,等待启动信号。如果得到信号,就会在不大于20ms的时间内适时 通过启动回路给线包加上一个相应的高电压,动触点在强激磁产生的吸力作用下, 克服弹簧推力和惯性,迅速向静触点运动。单片机可以通过传感器判断触点的吸 合情况并控制续流回路,及时提供合适的吸持电压。一旦发现电源电压小于释放 电压,单片机立刻选择合适的相位,停止向线包供电,触点在弹簧的作用下复位。

显然在启动过程中,相电流会激增甚至超过设定值,电流激增的程度和激增持续 的时间与电动机所带负荷有关。这可以根据部颁标准和行业要求,增加相关程序, 就可以很好地区分不同的负荷情况甚至短路而自动选择相应的启动保护时间,使 电动机可以带载启动。

2单片机的选用和基本硬件的设计 为了安装与使用的方便,输入电压可以设计成自适应型的。传感器是在磁 环或矽钢片上绕一个绕组并通过整流装置送入单片机。单片机通过传感器取样比 较后,最终输出的是一个电平信号或某一频率的脉宽信号,用于驱动执行机构。

而强电强磁的干扰往往使之产生误动作。为此,需要采取多项措施抗干扰,除了 屏蔽、光电隔离等传统措施以外,还可以通过带通滤波和采样算法来抑制干扰。

单片机分别选用美国Motorola公司的M68HC系列和Microchip公司的PIC系列单 片机。Motorola公司的单片机在汽车上的应用非常普遍,有很强的抗干扰性能, 而Microchip公司的PIC系列单片机由于内部有A/D,其外围电路就相对简单了。

由于这些单片机的内部资源比较丰富,采用分时动态扫描模式进行显示,其外部 元件非常少,不但降低了成本,而且使可靠性大大提高。

3单片机主程序框图 交流接触器智能化程度的高低,主要取决于控制方案的选取和软件的编制。

程序的总体框图如图2所示。

程序在执行时,首先要对电网电压取样,若电网电压的不平衡度大于30%,程序拒绝继续执行,并用发光二极管对此项进行显示。此项检测通过以后,单片 机根据相位同步信号和上次吸合、分断过零触点的记录,选择下一个触点作为目 标触点,同时根据采样电压的数值,选择合适的吸合相角,进入控制待机状态。

吸合命令一到,单片机立刻执行吸合子程序。吸合结束,单片机便使主控器件截 止,系统自动进入吸持阶段,线包以低电压、小电流维持励磁吸合状态。

4实验研究 可行性实验是在开发装置上进行的。考虑到系统的抗干扰能力和操作方便, 选择擦写方便的89C52单片机,和苏州机床电器厂生产的JZ7型号中间继电器 (380V,5A)组合,进行了大量的实验,基本情况如下。

(1)吸合及分断过程 接触器绕组的工作电压为380V,在交流220V的条件下无法完成吸合。和 智能装置进行组合,同样在220V的情况下,吸合一次完成。用示波器观察,吸 合指令和执行机构的时间误差最大不超过40ms,76%以上在20ms以内。在不产 生一、二次弹跳的前提下,吸合电流为0.12A,而吸持电流仅为6mA,效果相当 理想。当外电压降到160V,触点自动断开,单片机处于采样、待机状态。

大量的实验告诉我们,对于同一类型的接触器和断路器,它们弹簧弹力和 动点质量基本相同,因而具有相同的惯性。电网电压的波动使磁力克服惯性移动 相同距离的时间是不同的,因而导通相角和导通时间也应该不同。把不同型号的 接触器和断路器在不同电压下的最佳吸合相角和吸合时间制成表格,单片机以查 表的方式进行控制,可以使接触器工作在最佳状态下。

分断过程有相似的结论。这里单片机要做两项工作:更换取样触点和确定 分断时刻。后一项工作也是在大量实验的基础上查表完成的。目前正在利用新的 传感技术和过程取样技术,完善过零分断的闭环控制,通过自学习功能自动更新 表格中的相关数据,提高模块的智能化程度。

(2)吸持过程 启动过程结束以后,线包就在低电压、小电流状态下工作。单片机在维持 这种状态的同时,对吸合电压及电网不平衡度进行监视,一旦有短路、断相、电 网电压不平衡度超过30%或者电网电压低于160V及启动运行电流超过设定值,控 制回路立刻按过零要求进入分断子程序进行失电分断,从而保护设备的安全。(3)通信联网 通过单片机的串行口与微机RS232相联,从微机键盘或鼠标修改单片机的 控制参数,同时将单片机的各路电流采集值读回微机显示。这样联网后可对各被 控对象的运行状态实时监控,易于操作。

5结论 选择不同的单片机,可以组成具有较强抗干扰能力和运行可靠性的产品, 其抗干扰能力虽然不如PLC,但其较高的性能价格比,运行效果仍然令人满意。

和新的传感技术相结合,可以增加包括监测触点温度在内的具有学习功能的智能 化产品,和我国大量的接触器、断路器相组合,将是我国低压电器摆脱落后局面、 走出低谷的有利契机,必将为提高我国低压电器的档次作出贡献。