【建立在个性化推荐学习的网络培训的基础上,对教学课程平台进行设计与实现】

建立在个性化推荐学习的网络培训的基础上,对教学课程平台进行设计与实现

建立在个性化推荐学习的网络培训的基础上,对教学课程平 台进行设计与实现 随着信息技术的飞速发展,计算机技术不断地在教师培训领域中渗透与融 合。教育部办公厅印发的《2017年教育信息化工作要点》明确提出, 深入推进信 息技术与教育教学深度融合,深化数字教育资源开发与应用,加强网络学习空间 应用广度与深度。教师培训属于一种在职继续教育,有其特点和难点,在线学习, 个性化学习作为近年来研究的一种新的培训方式,更重视在职培训学生的主体性 和个性特征,让学生实现更高效的学习,无疑将在未来教育技术发展过程中占据 主导地位。无论从培训机构层面还是从受培训学生需求层面看,多元化、智能化、 个性化的网络教学必将成为未来在职教师培训领域发展的主要方向。

国家对于在职教师的培训越来越重视,每年投入大量的国培等各类培训项 目经费,但培训效果却不尽于人意。这是因为在职教师半生不熟的知识结构造成 的,不怕不懂,就怕一知半解告诉我们传统的课堂统一教学培训模式,是导致在 职教师培训热情不高,培训目标参差不齐的主要原因。因此,网络研修、校本研 修、乡村教师工作坊等依托网络教学的培训项目成为当前全国中小学教师继续教 育资助的重点领域。近年来,我校也适时提出通过建立教师在线培训工作坊和一 体两翼来破解教师培训瓶颈,一体是以教师自主校本研修为主体,两翼分别是远 程培训和集中培训。这些都迫切需要网络在线培训平台的技术支撑。

根据培训目标和教学系统的建设要求,本文提出了一种基于个性化推荐学 习的在线课程教学平台的设计与实现技术。基于个性化推荐学习的在线课程教学 平台系统是一个跨平台、跨数据库、可扩充和可移植的系统。系统通过智能学习 到访者的特征和使用痕迹,调整使用者的学习内容和训练题库,同时,根据使用 者的学习情况自动分析使用者的潜在学习需求,推送课程知识,供使用者自主选 择学习。大部分的教学资源和信息资源采用网络数据库存储, 充分利用和整合网 络资源的有效利用。

一、相关工作 本系统平台的核心技术是通过关联规则挖掘来实现个性化推荐学习课程 知识。个性化推荐服务被广泛应用于数字图书馆、电子商务、新闻网站等各个领 域中。个性化推荐服务根据用户兴趣的相似性来推荐资源,通过研究不同用户的 兴趣, 主动为用户推荐最需要的资源。个性化推荐技术主要有三种:基于规则过滤技术、基于内容过滤技术、基于协作过滤技术。该项技术是提高个性化、自主 学习的一种重要手段。近年来,随着数据挖掘领域的拓展,利用关联规则实现基 于规则的过滤推荐成为主流。文献提出了一个简单高效的关联规则和序列模式挖 掘算法Predictor,该算法具有较快的响应速度,可以满足实时页面推荐的需要, 同 时该算法还可以进行增量挖掘。文献Weiyang Lin 等也是提出一种高效的关联规 则算法来实现个性化推荐。

关联规则也称为关联模式,关联规则挖掘发现大量数据中项集之间有趣的 关联或相关联系。是一种较好的信息推荐方法。是形如:A(年龄(X,20...30), 职业(X, 学生))B(购买(X,笔记本电脑))的形式。挖掘算法首先由Agrawal 等提 出来和研究,Agrawal 等提出基于频繁项集的剪枝算法分为两个阶段,首先找出 所有的频繁项集,然后由频繁项集产生强关联规则,这些规则必须满足最小支持 度和最小可信度。支持度(support):P(AB),即A 和B 这两个项集在事务集TS 中 同时出现的概率。置信度(confidence):P(B|A),即在出现项集A 的事务集TS 中, 项集B 也同时出现的概率。同时满足最小支持度阈值和最小置信度阈值的规则 称为强规则。给定一个事务集TS,挖掘关联规则问题就是产生支持度和可信度 分别大于用户给定的最小支持度和最小可信度的关联规则,也就是产生强规则的 问题。为了降低个性学习推荐系统的研发难度,本系统引擎模块通过接口调用比 较著名的成熟开源数据挖掘平台Weka 实现相应功能。

二、系统平台设计 整个系统划分为课程资源管理、系统管理、个性化学习推荐和互动管理等 四个子系统,每个子系统包含若干功能模块。

三、系统核心技术的实现 (一)学习行为捕获 (二)学习行为识别 (三)个性化学习资源推荐 首先获取用户的学生注册的基本信息、在线练习测试成绩、学习行为记录 数据等进行预处理后,通过调用Weka 进行分类和聚类确定学生所属群体,然后 将学生注册的基本信息、在线练习测试成绩、学习行为记录数据与互动管理子系 统中的评论信息、评分信息和教师标导信息结合构建事务集,并调用Weka 的数据规范化处理和关联规则挖掘算法进行数据正则化处理与数据挖掘,发现给定置 信度和支持度的描述用户学习兴趣的规则,以及挖掘学生学习的技术路线图然后 进行用户匹配和信息推荐,向当前访问学生用户推荐可能感兴趣的知识点和教学 资源,最终实现个性化学习推荐。

四、结束语 本文主要探讨了基于个性化推荐学习的在线课程教学平台的构建思路、设 计与实现技术。基于个性化推荐学习的在线课程教学平台系统是一个跨平台、跨 数据库、可扩充和移植的系统。系统通过智能学习到访者的特征和使用痕迹,调 整使用者的学习内容和训练题库,同时,根据使用者的学习情况自动分析使用者 的潜在学习需求,推送课程知识,供使用者自主选择学习。面向课堂教学和学生 自主个性化学习的在线教学平台的构建是一个复杂、浩大的工作,不仅需要涉及 课程群的多位专业授课教师深入研究知识点群,重构知识点群层次,与系统设计 思想接轨。还需要平台相关技术人员构建好相应软件技术平台,不断改进技术, 并在平台上实现相关教育理念和教学思想。平台的构建和应用,打破了传统教学 的时空限制,能够实现网络自主学习、推荐学习的培训目标。下一步我们将继续 深入研究,并在教学实践中不断改进、完善、扩充本系统的功能,使其能够满足 更深更广的教师培训需要。